Here's how to make a PDF using Mathjax with DocRaptor:

<!DOCTYPE html>
<title>MathJax Test Page</title>
<!-- Copyright (c) 2009-2015 The MathJax Consortium -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<script type="text/javascript">
var MathJaxDone = false;

function docraptorJavaScriptFinished(){
return MathJaxDone;

<script type="text/x-mathjax-config">
    extensions: ["tex2jax.js"],
    jax: ["input/TeX","output/HTML-CSS"],
    tex2jax: {inlineMath: [["$","$"],["\\(","\\)"]]}
  MathJax.Hub.Queue(function () {
  MathJaxDone = true;
<script type="text/javascript" src=""></script>

h1 {text-align:center}
h2 {
  font-weight: bold;
  background-color: #DDDDDD;
  padding: .2em .5em;
  margin-top: 1.5em;
  border-top: 3px solid #666666;
  border-bottom: 2px solid #999999;

<div style="color:#CC0000; text-align:center">
<b>Warning: <a href="">MathJax</a>
requires JavaScript to process the mathematics on this page.<br />
If your browser supports JavaScript, be sure it is enabled.</b>

<h1>Sample MathJax Equations</h1>


<h2>The Lorenz Equations</h2>

\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy

<h2>The Cauchy-Schwarz Inequality</h2>

\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2} \leq
 \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

<h2>A Cross Product Formula</h2>

  \mathbf{V}_1 \times \mathbf{V}_2 =
    \mathbf{i} & \mathbf{j} & \mathbf{k} \\
    \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
    \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\

<h2>The probability of getting \(k\) heads when flipping \(n\) coins is:</h2>

<p>\[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]</p>

<h2>An Identity of Ramanujan</h2>

   \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} =
     1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
      {1+\frac{e^{-8\pi}} {1+\ldots} } } }

<h2>A Rogers-Ramanujan Identity</h2>

  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
     \quad\quad \text{for $|q|<1$}.

<h2>Maxwell's Equations</h2>

  \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
  \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
  \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
  \nabla \cdot \vec{\mathbf{B}} & = 0

<h2>In-line Mathematics</h2>

<p>Finally, while display equations look good for a page of samples, the
ability to mix math and text in a paragraph is also important.  This
expression \(\sqrt{3x-1}+(1+x)^2\) is an example of an inline equation.  As
you see, MathJax equations can be used this way as well, without unduly
disturbing the spacing between lines.</p>


Did this answer your question?